
CS122 Lecture: Architectural Design; the MVC and Client/Server
Architectural Patterns

last revised February 28, 2022
Objectives:

1. To introduce architectural design
2. To introduce UML diagrams relevant to architectural design - component

diagram, deployment diagram
3. To introduce the use of packages
4. To discuss several architectural patterns Layered, MVC, Client-Server, Pipe

and Filter

 Materials:

1. Projectables

I. Introduction

A. In any sort of design, one key thing we need to do is to partition a
larger problem into smaller pieces. (The divide and conquer
principle). At the system architectural level, the pieces go by different
names, depending on what is actually involved:

1. A component is a piece of an overall system that has a clear role,
can be isolated, and can, in principle, be replaced with a different
component that provides the same functionality. A component may
be software, hardware, or both.

Examples:

a) A hardware device like a computer’s monitor is a component.

b) A web-browser is a component.

c) In designing software, a key concept is the notion of a re-usable
component, which is simply a component that can be “plugged
in” to different problems

1

2. A system is a collection of components that work together to do
some job. Complex systems are often composed of definable
subsystems, which have internal structure of their own.

(Sometimes the term “system” is limited to just hardware and
software, but other times the term is used more broadly to
encompass people, processes, organizational structures etc.)

We will discuss a web-server system for an ecommerce site as an
example of this shortly.

3. When a system is geographically distributed, the subsystem at a
particular location is often called a node.

4. If the system has many classes - as it often does - we may choose to
describe the system by using packages of related classes rather than
showing the individual classes. (The examples we will do in this
lecture use this approach)

Quick-Check Questions d, e

II. UML Diagrams Relevant to Architectural Design

UML has two kinds of diagrams that are useful at this level.

A. A component diagram shows the major software components of a
system and their relationships.

QC Question g

An example: A typical structure for an e-commerce site is as follows:
the web server houses a database of information about the company’s
products. When a customer request is received, it generates a dynamic
web page which it sends to the customer’s browser, based on a
template stored on the server. (E.g. if the customer submits a search
request, the server software searches the database and creates an
appropriate search results page based on a template for such pages.)
This can be depicted as follows (using UML 1 notation, which is the
notation used in the book - UML 2 is different)

2

PROJECT

B. A deployment diagram shows the major hardware components of a system
and their relationships, and also indicates which software components are
allocated to each hardware component. It is particularly useful for use
with distributed systems, in which the hardware components are located at
different places.

QC Question h

1. The major components of a deployment diagram are nodes - symbols
representing either a processor or some significant piece of hardware
that the system utilizes. The standard symbol for a node is a cube:

PROJECT

Web
Page
Template

Server
Software

Database
Web
Page
Template

Web
Page
Template

Dynamic
Web
Page

3

a) Nodes representing specialized pieces of hardware can be represented
by specialized symbols, as we shall see shortly.

b) Nodes are connected by associations, representing the flow of
information back and forth between them.

c) We may also explicitly show the network which allows the nodes to
communicate, if they communicate via a general-purpose network
rather than via dedicated hard-wired connections.

d) Note that, in contrast to other diagrams we have drawn, in a
Deployment diagram the symbols represent hardware - not software.
(The software is deployed on one or more processors, depicted by
node symbols.)

2. Deployment diagrams can be used to depict several different types of
systems:

a) Embedded Systems

(1)An embedded system is one in which a computer is embedded in
some piece of physical equipment to control it (e.g. a home
appliance, a car, or a chemical plant)

(2)The following example appears in the UML User Manual (page
412, depicting an embedded system controlling an autonomous
robot

Note that there is only one processor - the remaining nodes are
specialized hardware controlled by software in the processor. Note
also the used of specialized symbols for these nodes - chosen ad-
hoc to help the reader understand the diagram. (These are not
standard UML symbols!)

PROJECT

4

b) Client/Server Systems - which we will discuss more fully shortly

�

5

�

c) Fully-Distributed Systems

PROJECT - (UML User Manual page 415_

Note how the Internet is depicted, potentially connecting any console
to any regional server, while direct hard-wired connections between
specific servers are shown as associations.

3. A Deployment diagram is not required for the Library system, as
specified.

a) The system we have been designing thus far has been designed,
presumably (but perhaps unrealistically), to run on a single computer

b) Suppose, however, that we were to design it as a distributed system -
perhaps with several clerk consoles (computers), and perhaps some
kiosks that customers can use to make inquiries. What might such a
system look like?

ASK

DEVELOP A DEPLOYMENT DIAGRAM AS A CLASS.

Some options to consider

(1)Server - perhaps a separate system

(2)Manager console - perhaps a separate system, or server system
could double in this capacity.

c) Note: for purposes of the project, do not attempt a distributed
implementation!

6

III.Architectural Patterns

A. It turns out that there are a variety of architectural design patterns that
are appropriate for different situations.

B. The book talked about another such pattern, which can be used both
for hardware/software systems and for understanding purely software
systems.

ASK

Layered architecture

QC Question f

1. In a system using a layered architecture, the system is organized
into layers.

a) A given layer may only directly depend on the services provided
by the layer immediately below it.

b) Each layer defines an interface representing services it makes
available to the next layer up.

2. Example: The book discussed a four layer architectural pattern

7

PROJECT (Figure 9.5 from book)

3. Example: Java implementations typically use a layered architecture
that looks like this:

PROJECT

8

a) A JVM implementation is specific to a particular platform. It
depends on the facilities of the native operating system, and is
capable of executing any standard java class file.

b) The bytecodes produced by the javac compiler (and the API routines in
the java. and javax. packages in the system library) depend only on the
standard java class file format Thus, the same class files will run on
any java implementation, regardless of the platform.

4. Layered architectures are not confined to software. Layering is also
used in systems comprised of software and hardware - e.g. there is
a model for understanding computer networks called the ISO/OSI
model which has seven distinct layers - several of which involve
both software and hardware.

The lowest layer is the physical layer- the physical means by which
bits are transmitted from one place to another. A physical link can
be something like ethernet, or fiber optics, or wireless. Higher
layers should be unaffected by what choice is made at this layer,
though. One manifestation of this is that a computer that is
connected to a network via a wired connection can be seamlessly
shifted to a wireless connection.

Java Bytecodes (.class files)

 Java API

JVM Implementation and
native classes

Platform
(Native Operating System

and Physical CPU)

9

C. The student registration system that has been the basis of three labs
you have done/will do and the starter software I gave you for the
Library project are based on another architectural pattern, called the
Model View Controller architectural pattern that is used extensively is
the Model-View-Controller (MVC) architecture. Many GUI
applications follow this pattern - often at multiple levels

PROJECT

1. It has some key benefits in terms of producing a cohesive system

a) Classes in each part of the system perform different sorts of tasks.

(1)Classes in the model serve to represent entities that the system
manipulates. Each class has, as its single task, representing some
one kind of entity.

(2)Classes in the view allow users to interact various aspects of the
system - e.g. a specific entity, or a specific body of information,
displaying information and receiving user requests.

(a)When something in the model changes, it notifies the view

(b)When an actor requests an operation in the view, it notifies the
controller

Model

ViewController

interacts
with

informs of actions

updates

notifies
 about
 changes

10

(3)Classes in the controller represent various tasks (use cases) that the
system performs, by updating the view in response to user requests

b) Each part of the system, then, focusses on one type of thing:

(1)The model focusses on representing information.

(2)The view focusses on displaying information.

(3)The controller focusses on carrying out user commands on
information.

c) Note that this is not a layered architecture, because the View depends
on both the Model and Controller layers.

2. Both the registration system you worked with in lab and the library starter
code I gave you actually have three packages called model, view, and
controller. (However, the “notifies about changes” dependency is not
realized, because it would require use of a design pattern you don’t know
about yet. We will talk about something like this might be done when we
discuss the Observer design pattern in the next series of lectures.)

3. Can you think of an example of a system (other than the registration
system or the library, of course) that uses this architecture?

ASK

The AddressBook System

a) What classes constitute the model?

ASK

AddressBook, Person, FileSystem

b) What classes constitute the view?

ASK

11

AddressBookGUI, MultiInputPane

c) What classes constitute the controller?

ASK

AddressBookController (also AddressBookApplication)

D. Another pattern is the client-server architecture - a pattern that occurs
over and over in Internet applications.

1. In the simplest case, a client-server system consists of a server
system and (one or more) client subsystems. For example, a web
browser relates as a client to a web server; the mail program
running on a personal computer acts as client to a mail server, etc.

2. More complex systems can be understood in terms of a layered
model: a user-interface layer, a business-logic layer, and a database
layer. For example, many e-commerce systems are set up this way:
the user interface layer is a web page (perhaps with embedded
javascript) viewed by a web browser; the business-logic layer is the
software that provides information in response to user requests and
processes orders, and the database layer stores information about
the products and records user orders. There are three different
ways these might be distributed:

PROJECT

a) An approach often used by e-commerce systems (the so-called
“thin client” approach)

12

b) The so-called “thick client” approach, used when it is desirable
to install the business logic software on the client system (This
wouldn’t work for e-commerce, of course, but is sometimes
used for specialized applications)

c) A three-layer approach that can also be used as an alternative to the
thin client approach. (Note that the client would never see any
difference between this approach and the thin-client approach; in
fact, many e-commerce systems are in fact built this way)

Client System(s)

Server System

User-interface layer

Business-logic layer

Database layer

Client System(s)

Server System

User-interface layer

Business-logic layer

Database layer

13

3. While the client-server architecture is most commonly seen in
distributed systems, it can also be used for software systems running
on a single computer - e.g. a program that uses a relational database
is often structured as a client relating to a separate database server
program running on the same computer. (In fact, a database server
program running on a computer may simultaneously be serving
several different clients on that same machine.)

E. An alternative architecture for distributed systems is a Peer-to-Peer
architecture in which there is no designated server as such. Instead,
each participating system can function either as a client, or as a server
to some other system.

F. Another architectural pattern is the “Pipe and Filter” Pattern. In this
approach, a system is organized as a collection of subsystems called filters.
The overall input to the system flows into the first filter, which performs
some transformation on it and sends the transformed data to the second filter,

Client System(s)

“Visible”
Server System

User-interface layer

Business-logic layer

Database layer

Database
Server System
(Invisible to
clients)

14

which performs a further transformation on it and sends it to the third filter ...

PROJECT

1. One place where this architecture is often used is compilers. Thus,
a simple compiler might be organized like this:

PROJECT

(More sophisticated compilers include various code-improvement
(so-called “optimization”) steps which may be inserted either
between the parser and the code generator, or after the code
generator - or often both)

2. Another place where pipe and filter architecture is often used is in
systems that process signals such as sounds (e.g. speech recognition
systems.) In fact, the term “filter” really comes from the world of
hardware signal-processing systems.

15

Filter 1 Filter 2 Filter 3 Filter n••
•

Raw
Input

Final
Output

Tokenizer Parser Code
Generator

Source
Program
(stream of
characters)

Stream of
Tokens

Parse
Tree

Object
Program

